

AFM 37

AFM 37

Technisches Datenblatt 337, bisher TD 270

Stand: 08/2015, vorherige Ausgaben sind ungültig

Die aktuelle Ausgabe finden Sie unter www.reinz- industrial.com

Werkstoff AFM 37 ist ein asbestfreies Dichtungsmaterial. Es enthält Aramidfasern und weitere

hochtemperaturbeständige Asbestsubstitute, die unter erhöhtem Druck und

erhöhter Temperatur mit hochwertigen Elastomeren verarbeitet sind.

Eigenschaften AFM 37 ist ein preisgünstiger Dichtungswerkstoff. Er zeigt gutes Dichtverhalten bei

Gasen und Flüssigkeiten bei gleichzeitig guter Anpassungsfähigkeit. Die thermische

Belastbarkeit des Materials ist als sehr gut zu bezeichnen.

Anwendung • in Dichtstellen, die mittleren Betriebsdrücken ausgesetzt sind, zum Beispiel in

Transformatoren, Kompressoren, Rohrleitungen, Apparaten,

Verbrennungsmotoren
• zur Abdichtung von Getriebe-, Hydraulik-, Kälte- und Motorölen

• gegen Kraftstoffe, Gemische aus Wasser mit Frost- und Korrosionsschutzmitteln

• gegen Frigene/ Freone, Laugen und Lösungsmittel

Oberflächen AFM 37 besitzt standardmäßig auf beiden Oberflächen eine den Ausbau

erleichternde Trenndecke (TD 2) mit hohem Reibwert. Eine zusätzliche Oberflächenbehandlung erübrigt sich dadurch in den meisten Fällen.

Freigaben DIN- DVGW

nach DIN 3535, Teil 6 FA

Grade Y nach BS 7531

Germanischer Lloyd (DNV GL)

Freigabe für den Schiffbau

<u>AFM 37</u>

Technische Daten (Nenndicke 2,00 mm)	Dichte	g/ cm³	1,9 - 2,1
	Glühverlust nach DIN 52 911	%	< 25
	Zugfestigkeit nach ASTM F 152, quer nach DIN 52 910, quer	N/ mm² N/ mm²	> 8 > 6
	Druckstandfestigkeit nach DIN 52 913 16 h, 300 °C 16 h, 175 °C	N/ mm² N/ mm²	≈ 22 ≈ 32
	Zusammenpressung und Rückfederung nach ASTM F 36, Verfahren J Zusammenpressung Rückfederung	% %	7 - 15 > 50
	Dichtwirkung gegen Stickstoff nach DIN 3535, Teil 6 FA	mg/ (s·m)	< 0,1
	Quellung nach ASTM F 146		
	in Öl IRM 903 (ersetzt ASTM Öl Nr. 3) 5 h, 150 °C Dickenzunahme Gewichtszunahme	% %	< 10 < 15
	in ASTM Fuel B 5 h, RT Dickenzunahme Gewichtszunahme	% %	< 10 < 10
	in Wasser / Frostschutzmittel (50:50) 5 h, 100 °C Dickenzunahme Gewichtszunahme	% %	< 5 < 10
	Spitzentemperatur kurzzeitig	°C	400
	Dauertemperatur maximal	°C	250
	Betriebsdruck maximal	bar	100

Maximale Dauertemperatur und maximaler Druck dürfen nicht zugleich auftreten, siehe Tabelle
"Max. Betriebsdrücke bei verschiedenen Temperaturen und Medien"!

AFM 37

<u>DIN 28091-2:</u>		
Kaltstauchwert $arepsilon_{KSW}$	%	7 - 12
Kaltrückverformungswert $arepsilon_{KRW}$	%	4 - 8
Warmsetzwert $\varepsilon_{_{ m WSW/T}}$	%	13 - 15
Warmrückverformungswert $\varepsilon_{\mbox{\tiny WRW/T}}$	%	≈ 0.65
Rückverformungswert R	mm	≈ 0.012
Spezifische Leckagerate λ	mg/ (s·m)	< 0.1
Restflächenpressung nach 1000 h (Luft, 100 °C)	%	> 50

Dichtungskennwerte siehe entsprechende Tabelle

Die vorstehenden technischen Daten gelten für das Material im Anlieferzustand ohne Zusatzbehandlung. Aus ihnen können jedoch bei der Vielfalt der möglichen Einbau- und Betriebsbedingungen nicht in allen Anwendungsfällen verbindliche Schlüsse auf das Verhalten in einer Dichtverbindung gezogen werden. Aus diesem Grunde können wir für die technischen Daten keine Gewähr übernehmen. Sie stellen keine zugesicherten Eigenschaften dar. In Zweifelsfällen bitten wir um Rückfrage unter genauer Angabe der Betriebsbedingungen.

Lieferform

Dichtungen nach Zeichnung, Maßangaben oder sonstigen

Vereinbarungen.

Platten 1500 x 1500 mm (Standardformat)

Nenndicken und Toleranzen nach DIN 28091-1 (mm)

Grenzabmaße innerhalb einer Lieferung

0,30	±0,10
0,50	±0,10
0,75	±0,10
1,00	±0,10
1,50	±0,15
2,00	±0,20
3,00	±0,30

Höchstwert des Dickenunterschiedes innerhalb einer einzelnen Platte: Plattendicke ≤ 1,00 mm = 0,1 mm; > 1,00 mm = 0,2 mm